

Air Force Life Cycle Management Center

Countersink Bushing Repair-Lower Wing Skin T-38

September 13, 2016

Luke Bracken
Senior Intern
AFLCMC/WLDEJ

DSN: 586-1861

luke.bracken@us.af.mil

Overview

- Issue
- T-38 standard countersink fastener repairs
- Countersink Macro
- Comparison of StressCheck[™] results to T-38 standard AFGROW solution
- Conclusions/Discussion

Issue

 Is the current approach to fastener repairs appropriate?

T-38 Standard Repairs

- NDI indication is drilled out in 1/64 inch increments until the indication is removed
- Oversize fastener and bushing repairs are common
 - Involves drilling out indication and installing an oversize fastener or countersink bushing in the lower wing skin
 - Bushing with fastener installed

Oversize fastener installed

T-38 Standard Approach Beta Correction Macro

- Developed by Southwest Research Institute
- Calculates beta correction factors based on geometry of countersink
- Use in connection with AFGROW to allow modeling of the countersink fastener/bushing
- Only effective when radius over thickness (r/t) is less than 2.5

Process

- A parametric model of a centered countersink fastener hole was built in StressCheck™; changes in diameter and thickness of plate were explored
- Modeled same solution sets using T-38 standard approach
- Plotted Total Beta vs Crack Length comparison of StressCheck[™] and T-38 standard approach
- Plotted Crack Length vs Life of StressCheck™ and T-38 standard approach

Thick Plate Standard Geometry

Thickness: 0.34 in

Dia: 0.2651 in

Countersink Dia: 0.463 in

Countersink Depth: 0.102 in · CSK Beta Correction:

Thickness: 0.238 in

Dia: 0.2651 in

• $r/t_{total} = 0.556$

_	

Crack Length	βcs
0	1.1369
0.0265	1.1232
0.053	1.1095
0.0795	1.0958
0.106	1.0821
0.1326	1.0684
0.1591	1.0548
0.1856	1.0411
0.2121	1.0274
0.2386	1.0137
0.2651	1

Thick Plate Standard Geometry

Beta vs Crack Length

Thick Plate with Bushing Repair

Thickness: 0.34 in

Dia: 0.563 in

Countersink Dia: 0.682 in

Countersink Depth: 0.05 in

Thickness: 0.29 in

Dia: 0.563 in

• $r/t_{total} = 0.97$

CSK Beta Correction:

Crack Length	βcs
0	1.0871
0.0563	1.0784
0.1126	1.0697
0.1689	1.061
0.2252	1.0523
0.2815	1.0435
0.3378	1.0348
0.3941	1.0261
0.4504	1.0174
0.5067	1.0087
0.563	1

Thick Plate with Bushing Repair

Beta vs Crack Length

Thin Plate Standard Geometry

Thickness: 0.11 in

Dia: 0.2026 in

Countersink Dia: 0.342 in

Countersink Depth: 0.077 in

Thickness: 0.033 in

Dia: 0.2026 in

• $r/t_{total} = 0.92$

CSK Beta Correction:

		4

Crack Length	βcs
0	1.3241
0.0203	1.2917
0.0405	1.2593
0.0608	1.2269
0.081	1.1945
0.1013	1.1621
0.1216	1.1296
0.1418	1.0972
0.1621	1.0648
0.1823	1.0324
0.2026	1

Thin Plate Standard Geometry

Beta vs Crack Length

Thin Plate with Bushing Repair

Thickness: 0.11 in

Dia: 0.75 in

Countersink dia: 0.869 in

Countersink depth: 0.05 in

Thickness: 0.06 in

Dia: 0.75 in

• $r/t_{total} = 3.41$

CSK Beta Correction:

Crack Length	βcs
0.001	1.251
0.075	1.2259
0.15	1.2008
0.225	1.1757
0.3	1.1506
0.375	1.1255
0.45	1.1004
0.525	1.0753
0.6	1.0502
0.675	1.0251
0.75	1

Thin Plate with Bushing Repair

Beta vs Crack Length

Conclusion

- Current analysis approach for bushing repairs appears to be appropriate
 - Slight differences in life are not significant enough in these cases to drive a shorter inspection interval
- If radius over thickness (r/t) is greater than
 2.5 for a fastener or bushing repair, then
 StressCheck™ can be employed if needed