Center for Aircraft Structural Life Extension

Providing Structural Integrity Technology to the Aerospace Community

Application of AFGROW to Cold-Expanded Holes in High-Strength Steel

31 August 2010

Valdez.

We would like to thank the Ogden-ALC for funding this work

Ms. Whitney Ponzoha, USAFA/CAStLE Mr. Matthew Hammond, USAFA/CAStLE Dr. James Greer, USAFA/CAStLE

- Background / Purpose of project
- β Correction Factor Determination
- Residual Stress Data and AFGROW Prediction
- AFGROW and SOLR
- Results
- Future Analysis/Testing

BACKGROUND / PURPOSE OF PROJECT

 How best to use AFGROW for modeling crack at Cold Expanded (CX) hole in steel plate with in-plane bending

- Subject Structure Steel Stiffener
 - Crack Mitigation Options
 - Repair
 - Was not within the scope of this program; OEM already has design
 - Over-sizing holes
 - Not recommended based on FE results
 - Significant life reduction if crack not cleared
 - Cold-Expanding the holes (Current Effort)

AFGROW

- Good Solutions Quickly
 - Large solution space of crack geometries
 - Does not directly allow in-plane bending as input (one exception)
- Project Goal:
 - Determine appropriate AFGROW inputs for more accurate modeling of this (and similar) parts
 - AFGROW inputs:
 - \blacksquare β correction factor: accounts for the geometry
 - Shutoff Overload Ratio (SOLR): accounts for retardation due to the spectrum loading
 - **■** Residual stresses: accounts for the cold-expanding
 - Some combination of SOLR + beta correction + residual stress input may be best solution

Specimen Design Criteria

- Geometry
 - Complicated X-section and hard to test in the lab
 - Flat specimen produced the required stresses and lend itself very well to AFGROW analysis
- Loading
 - Test specimen reproduces the same stresses (tensile, in-plane bending) in vicinity of the hole
 - Withstands max compressive spectrum load without buckling
- Material characteristics
 - 4340 Steel
 - Heat treated to approximately 170ksi
 - Rockwell hardness ~ 37C

Test Specimen

- Strain survey specimen to validate test specimen
 - Compared to aircraft level FEA model (from OEM) design
- Gage ratio
 - In-plane bending induced by the geometry
 - Specified stress ratio between gages 1 and 2
 - Specified gradient measured with multiple gages
- Floating Nut Plate Installed per Drawing
 - Crack growth from nut plate holes or vice versa

	Bore-Crack						Edge-Crack	
Specimen Category	А	В	C	D	E	F	G	Н
Specimen Description	Non-CX w/ 0.05" CA	Non-CX w/ 0.05" Spectrum	CX w/ 0.05" berfore CX Spectrum	CX w/ 0.05" after CX Spectrum	Non-CX w/ 0.005" Spectrum	CX w/ 0.05" CA	Non-CX w/ 0.05" Spectrum	CX w/ 0.05" Spectrum
Number of Specimens	3	3 (Baseline)	3	3	3	3 (Optional)	3 (Baseline)	3

Test Matrix

- $A \beta$ correction factor determination for bending
- B Baseline test
- C Cold-expansion occurs after 0.05" flaw is grown
- D Cold-expansion occurs before 0.05" flaw is grown (status)
- E Will test the 0.005" IFS assumption
- $\mathbf{F} \mathbf{\beta}$ correction factor determination for CX (optional)
- G Baseline test for edge crack
- H Cold-expansion occurs after 0.05" flaw is grown edge crack

β CORRECTION FACTOR DETERMINATION

β Correction Factor Determination

β correction factor

- In-plane bending not accounted for in AFGROW
- Accounts for presence of nut plate holes
- Specific for a particular specimen geometry and loading
 - This program's β correction factor will only be useful for this and very similar cases

Complications of Testing 4340 Steel

- Marker band testing (6, 10, 4)
 - 2,000 cycles σ_{max} to σ_{min} , 100 cycles at 75%, 10 cycles at 100% σ_{max}
 - 2,000 cycles σ_{max} to σ_{min} , 200 cycles at 50%, 10 cycles at 100% σ_{max}
 - $\sigma_{\text{max}} \approx 25 \text{ksi}, R = 0.1$
 - Marker bands were not visible, so...
- CA testing
 - Measurements taken at cycles corresponding to 0.01" crack growth

"Piecewise" β Correction Factor Determination

β Correction Factor Determination

Beta Corrector Factors

Beta Correction Vs. Cavg

RESIDUAL STRESS DATA AND AFGROW PREDICTION

Residual Stress Data and AFGROW Prediction

- Cold-Expanding Holes
 - Insert a sleeve -> expand -> remove
 - Creates compressive residual stresses surrounding the hole

1/2 model with mandrel cut-plane stresses

Residual Stress Data and AFGROW Prediction

- Residual stress profile input into AFGROW
 - AFGROW showed no growth of 0.05" flaw at hole under spectrum loading
 - High residual compressive stress no crack growth
- Experimental Results (CX)
 - Unable to extend 0.03" x 0.03" EDM notch at CX hole using pre-crack loads
 - 200,000 at 25ksi; R= 0.1 and
 - 200,000 at 27.8ksi; R = -0.4 and
 - 3 spectrum passes (3 lives non-CX) THEN
 - Inserted edge notch (0.03" X 0.03" EDM) and
 - Additional 130,000 cycles at 25ksi; R= 0.1
 - Crack growth observed at edge notch (0.039" x 0.059")
 - Began spectrum loading (again)
 - 1.5 passes to crack link-up
 - ligament failure almost immediately thereafter
 - Additional 0.86 passes to failure of entire specimen
- AFGROW can't model this particular CX case
 - Hole corner crack alone doesn't grow; can't do the two-crack geometry

- Shutoff Overload Ratio (SOLR)
 - Ratio of the overload to the nominal load required to effectively stop further growth under nominal loading
 - Controls the effect of load history on the predicted life
 - Approach: vary SOLR to adjust the life prediction to match test results
 - Values for Steel
 - AFGROW Manual: 2.0 (starting point for steel)
 - Tried values from 2.0 through 6.0
 - Preliminary results show ignoring retardation gives results that match experiments best
- How to use SOLR in CX case is TBD
 - Will sharp flaw grow from CX hole?
 - Increase the load?
 - Increase the notch?
 - If not, could use 0.005" initial flaw as conservative estimator

Shutoff Overload Ratio (SOLR) for Non-CX holes

Crack Growth Curves Specimens 7 - 9

SOME PRELIMINARY CONCLUSIONS

Preliminary Conclusions

Cold-Expanding

- CX at hole corner flaw may kill crack; AFGROW results concur
- Residual tensile stress may exist at free edge, but inserting flaw there did not result in drastic life reduction
- Use of 0.005" initial flaw assumption might provide conservative bound for inspection interval
- β correction factor
 - Each approach used gave a very similar result
 - Results are dependent on geometry/loading conditions

SOLR

- Ignoring matched non-CX test results best
- More CX experiments to come

Questions?

