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ABSTRACT 

This report documents the Hsu Load Interaction (Retardation) Model implementation in 

AFGROW.  The Hsu model originally developed at Lockheed-Georgia uses an effective stress 

and closure concept.  It assumes that the stress singularity does not exist if the crack surface is 

closed, and that the crack propagates only during that portion of the load cycle in which the crack 

surface is fully open.  A complete review of background and overview of the process is 

presented to establish the Hsu implementation model basis.   
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1 INTRODUCTION 

This report documents the Hsu Load Interaction (Retardation) Model implementation in 

AFGROW.  The Hsu model originally developed at Lockheed-Georgia uses an effective stress 

and closure concept.  It assumes that the stress singularity does not exist if the crack surface is 

closed, and that the crack propagates only during that portion of the load cycle in which the crack 

surface is fully open.  A complete review of background and overview of the process is 

presented to establish the Hsu implementation model basis.  This is offered to give the entire 

foundation of the Hsu model process in one place because there are certain aspects that are not 

apparent on the surface.  The overview and background is followed by details and flow of the 

Hsu model process.   

1.1 Background and Overview 

The retardation premise has been well established experimentally, that normal crack growth rate 

under constant amplitude loading changes if the load application is preceded by different 

amplitude.  The tensile overload causes permanent plastic deformation at the crack tip and along 

the crack flanks which, in turn, delays the crack growth at subsequent load cycles, while a 

tension-compressive load reduce the beneficial retardation effect.   

 

Hsu was associated with the Advanced Structures Department of Lockheed Georgia.  At the time 

Hsu developed his model, several researchers in academia and government had published their 

ideas, reference 1, 2, and 3.  These authors are familiar names to practicing fracture analysts 

today.  Ideas were also presented by reference 4, 5, and 6.  Different aspects of the problem were 

being addressed in papers by names such as, Hardrath, H.F., Hertzberg, R.W., Wei, R.P., Shih, 

T.T., Von Euw, E.F.J., Rice, R.C., Paris, P., Forman, R.G., and Schijve, J., many of these may 

also be remembered and recognized today. 

 

When Hsu was tasked to come up with a predictive technology for Lockheed, it should be 

remembered that many of these concepts were new and none had been completely verified, the 

only thing that could be said was that all investigators understood how complex predicting 
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variable loading crack growth was.  Several models had been suggested to account for the effects 

of delay on the prediction of fatigue crack growth.  Two models, Wheeler [1] and Willenborg et 

al [2], used the plastic zone size (for either plane stress or plane strain) associated with the 

applied load levels directly and one model, Elber [3], used plasticity indirectly to characterize the 

load interaction effect.  The two models, [1] [2], assume that if the size of the plastic zone size, 

rp, developed due to the application of the current load cycle extends to or past the extremities of 

a previously developed overload interaction zone, rpOL that is if (a+rp) ≥ rpOL), there will be no 

load interaction and the growth increment is the same as the one generated under constant 

amplitude loading.  Conversely, the crack growth rate will be reduced (retarded) if (a+rp) ≤ 

rpOL).  The load interaction model developed by Hsu borrowed and built on the approaches 

offered by Wheeler, Willenborg et al, and Elber.  These 3 methods are widely discussed in 

textbooks today but they were leading edge technology when Hsu put forth his model.  For 

completeness a brief presentation of each will be given to provide a reference to understand the 

Hsu model process. 

1.1.1 The Wheeler Model, reference 1, 7, and 8 

Wheeler modifies baseline constant amplitude da/dN according to the following formula 

m
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The  function is the ratio of the current plastic zone size and the remaining size of the plastic 

enclave formed at an overload raised to „m‟.  The exponent „m‟ shapes the retardation parameter 

 to correlate with test data.   
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In his experiments Wheeler found values for „m‟ of 1.43 for D6AC steel and 3.4 for Ti-6AL-4V 

titanium.  If m=0 then no retardation influence exists.  Although the Wheeler model is a 

substantial improvement over the linear cumulative damage rule, it is more of a data fitting 

technique than it is a predictive technique.  The exponent „m‟ has been found to be dependent not 

only on the material, but also upon the manner in which spectrum loads were applied.  The 
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bottom line is that this model simply shifts the constant amplitude baseline da/dN curve 

downward.  Thus slowing down the crack growth rate.  Figure 1 shows the affect of equation 1. 

 

Figure 1 

Although Wheeler never went beyond this formulation, it is possible to continue by simple 

convention.  In those days the Paris equation was available and so equation can be expressed as, 
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Keff = Kmaxeff - Kmineff 

Where 
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n

1
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Therefore, in terms of stress intensity, Wheeler‟s relationship can also be understood as shown in 

Figure 2.  It is an equivalent picture to Figure 1.  Whether the baseline da/dN curve is factored 

down as shown by arrow (B) or the K is reduced shown by arrow (A), the same thing is 

accomplished – a reduction in the crack growth rate arrow (C).  The danger in interpretation is 

that due to the shape of the baseline da/dN curve.  In both Figures, the baseline da/dN has been 

realistically depicted and therefore the direct equivalence of Figure 1 and 2 can be disputed 

depending where one is located on the da/dN data.  However, if strict Region II or Paris straight 

line was presented then the equivalence would be apparent.  The idea to keep in mind is that 

Wheeler‟s model holds R-ratio constant and varies K. 
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Figure 2 

 

1.1.2 The Willenborg, Engle, and Wood Model, reference 2, 7, and 8 

The Willenborg model uses an effective stress concept to reduce the applied stresses and hence 

the crack tip stress intensity factor.  The Willenborg et al model like Wheeler compares plasticity 

at the crack tip but expresses the plastic zone size and remaining overload plastic enclave in 

terms of stress or stress intensity.  This is an improvement over the Wheeler formulation because 

both Keffective and Reffective can be calculated.  The Willenborg et al model reduces the maximum 
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stress intensity and minimum stress intensity by a reduction stress intensity factor.  Willenborg 

solves for a stress intensity factor that would be required to produce a plastic zone size from the 

current crack size to the boundary of the overload plastic enclave.  The reduction stress intensity 

factor is set equal to the difference between the required overload stress intensity and the current 

maximum stress intensity.  It is a curious by-product of the formulation, that the current 

maximum stress intensity reduces itself.  This is a consequence of the math not physics but the 

intent of the model is to reduce the amount of crack growth due to an overload.  The Willenborg 

et al model accomplishes this by reducing the stress ratio, R.  The Willenborg et al model 

reduces both the maximum and minimum stress intensity by the same amount to an effective 

state and since both are reduced by the same amount, K is unaffected and in fact, 

Keffective=K.  The stress ratio, R, is reduced because Reff=Kmineff/Kmaxeff.  This is true provided 

the effective minimum stress is greater than zero; else Kmineff is set to zero and then Keffective is 

less than K.  The bottom line is that the Willenborg et al model shifts the constant amplitude 

baseline da/dN curve to a new lower R-ratio.  Thus slowing down the crack.  In Figure 3, arrow 

(B) represents the Willenborg Reff shift and arrow (C) shows the reduction in crack growth rate.  

The major issue is that Willenborg et al can be calculated whereas Wheeler is empirical.  The 

idea to keep in mind is that Willenborg et al model holds K constant and varies R-ratio.   

 

The basics of the Willenborg et al relationships are as follows. 

Kreduction = Kmax req - Kmax 

And 

Kmax req = [ ( a0 + rpOL – ai ) FTY
2
/C ]

0.5
 

Where 

a0 = Crack length at overload 

rpOL = Plastic radius at overload 

ai = Current crack length 

C =  times constraint 

And 

Kmaxeff = Kmax – Kreduction 
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Kmineff = Kmin – Kreduction 

Which gives 

Keff = Kmaxeff – Kmineff = Kmax - Kmin 

And 

Reff = Kmineff / Kmaxeff 

Figure 3 

 

1.1.3 The Elber Model, reference 3 and 7 

The Elber crack closure model is an empirically based model that uses an effective stress range 

concept to incorporate interaction effects in variable amplitude fatigue crack growth life 

predictions.  Elber found that fatigue cracks subjected to plane stress tension-tension loading 
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close before the remotely applied stress becomes zero.  This closing effect is the result of 

plasticity along the crack flanks.  Significant compressive stresses are transmitted across the 

crack face when the remote load is zero.  Elber assumed that crack extension occurs only when 

the applied stress is greater than the crack opening stress.  The stress range that contributes to 

crack extension is called the effective stress range, 

eff = max-op 

Where  

op is the crack tip opening stress determined experimentally. 

Defining a closure factor  as 

 = op/max 

Results in 

eff = max(1-) 

 is dependent on many factors, including material, thickness, temperature, corrosive 

environment, and stress peaks. 

The effective stress intensity factor can be calculated from the equation, 

Keff = eff sqrt( a) T. 

The crack growth rate is computed from the growth rate equation by replacing K with Keff in 

the familiar Paris equation, 

  P
n

 effKPc  
dN

da
  

Where baseline constant amplitude rate data in terms of K and R-ratio must be expressed or 

transformed into terms of K effective; Elber introduced a closure function U to accomplish this, 

Keff = U K 

Where  

U = f(R, …), 

The closure function U and the normalized opening stress function, , (closure factor) are related 

as follows, 

 = 1 - (1-R) U 
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Elber‟s model requires performing baseline da/dN tests for a range of R-ratios in order to 

develop the closure function U, but once found, any K and R can be transformed to Keff using 

 or U.  Elber‟s formulation generally works fairly well in Region II (the Paris region) but breaks 

down in Region I and III where closure is dependent crack size and geometrical constraint, not 

just R-ratio.  But in the late 1960‟s these were subtle nuances and remember the only available 

crack growth law was Paris.  Figure 4 presents an example of transforming K into Keff for 

7075-T6511 extrusion AFGROW data at several R-ratios by use of de Koning‟s, reference 9, 

7075-T6 U-function. 

Figure 4 

It can be seen that R-ratios of 0.0, 0.30, and 0.50 are fairly consolidated in Region II but are not 

in Region I and III.  R-ratio of 0.70 does not consolidate nearly as well.  This figure was 

presented to give an idea of the downside involved in closure models in spite of the effort that 

has to be taken to obtain the data.  As was stated 7075-T6511 extrusion baseline data was 

obtained from AFGROW (Harter T-Method).  The U-function was obtained for 7075-T6.  

Therefore, a reason that the K does not completely consolidate in Region II is because the U-

function was not derived on the baseline reference 7075-T6511 extrusion data, if it were then 

Keff would consolidate in Region II for the R-ratios considered.  This points out another aspect, 

that the closure function U is very sensitive to material form. 
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In summary, these 3 retardation models may be somewhat artificial; they do contain the relevant 

parameters.  The Wheeler model reduces K, the Willenborg et al reduces R-ratio, and the Elber 

model transforms both K and R-ratio.  All these models are based on plasticity considerations 

and it should be emphasized for clarity that, with increasing crack size (plastic zone size), it 

becomes increasingly difficult for the elastic material to restore the zero strain field after 

unloading.  Therefore, in addition to the parameters already mentioned, it must be remembered 

that retardation is crack size and panel size dependent and therefore requires more than equal 

stress intensity, reference 8. 

1.1.4 Hsu Model 

The Hsu model originally developed at Lockheed Georgia uses an effective stress and closure 

concept.  The model is not only capable of accounting for the retardation effect due to tensile 

overload, but also accounts for the effect of the compression portions of tension-compression 

load cycles on the fatigue crack growth rate during subsequent load cycles.  The current Hsu 

model is unable to account for compression-compression cycles, although it is known that a 

compressive-compressive load cycle will negate the retardation of crack growth due to tensile 

overload, reference 8.  In general, overloads decelerate or retard while underloads accelerate 

crack growth. 

 

The Hsu model assumes that the stress singularity does not exist if the crack surface is closed, 

and that the crack propagates only during that portion of the load cycle in which the crack 

surface is fully open.  The effective stress range of the load cycle during crack propagation is 

defined as, 

eff = max-0, 

Where  

0 is the far-field stress corresponding to the onset of crack opening. 

When the opening stress is less than the minimum stress of the applied load cycle, the effective 

stress range is given by, 

eff = max-min. 
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If the maximum stress of the applied load cycle is less than the crack opening stress due to prior 

loads, the crack surface will be fully closed and the fatigue crack will not propagate.  However, 

experimental evidence indicates that, below the closure K, strain concentration in the vicinity of 

the crack tip still exists.  Since fatigue damage is normally related to the cyclic strain range, the 

effective Kmin is likely to be somewhat lower than the level at the onset of closure and higher 

than Kmin under steady state (constant amplitude) condition.  The effective stress range and 

effective load R-ratio can than be rewritten as, 

eff = max-(min)eff, and 

Reff = (min)eff/max respectively, 

Where min < (min)eff < 0. 

The effective stress intensity factor can be calculated from the equation, 

Keff = eff sqrt( a) T. 

The crack growth rate is computed from the growth rate equation, 

da/dN = f(Keff, Reff,…) 

As can be seen, Hsu‟s equations are similar to the form of equations presented for Elber‟s crack 

closure model.  Analytical experimental correlations of the Hsu model were historically made 

using the Forman‟s crack growth rate equation rather than Paris.  The form of Forman‟s equation 

used was, 

 

  K 
c

FK R1

f
nK

f
c

  
dN

da




  

Where 

FKc = fitting parameter based partly on test and experience (not the fracture toughness of 

the material, as a rule around 4 times the average plane strain fracture toughness). 

It is important to remember that the Forman equation merely shifts constant amplitude baseline 

da/dN data up and down within the range of K values used to define it.  This is shown in Figure 

5.  The item to make note of is that the resultant sideways shift is constant.  For most materials, 

the shape of da/dN changes as R-ratio changes from zero.  For example, usually Region II 

exhibits a rotation and Region III a shift along with a change in slope, whilst Region I is 

relatively unaffected with slight shift as shown in left hand side Figure 4.  Furthermore, the 



 
  
 
  Ref. : TWD03ER009-1 
 Hsu Model Page : 12 of 58 
  Issue : 1 
  Date : 01-29-2004 

 

Use or disclosure of information herein is subject to the restrictions on title page of this document. 

rotation and shift are not constant with R-ratio.  Using the above form of Forman relationship, 

there can be no rotation in Region II or shifting in Region III as R-ratio is increased or decreased 

from the baseline reference as shown in Figure 5.  The da/dN keeps the same shape.  In other 

words, as discussed and presented in the Elber presentation above, most da/dN data shift 

sideways non-linearly with R-ratio, i.e., as the K increases the sideways shift also increases.  

Thus the above form of Forman‟s equation does not model da/dN realistically.  In addition, the 

use of the above form of Forman‟s equation also indirectly places a limit on the positive R-ratio 

than can be used within the range of baseline K values.  This R-ratio limit is intrinsic in the 

value chosen for FKc in the denominator.  As the baseline da/dN curve is shifted upward to model 

positive R-ratios, K values starting on the extreme right and progressing to the left as R-ratio is 

shifted upward (increased), go out of range and asymptotic assumptions must be made.  Also the 

value, FKc determines magnitude of the shift that is to be made from one R-ratio to another.  The 

larger the value of FKc the smaller the shift will be.  While the smaller the value of FKc the 

smaller the maximum positive R-ratio will be to cover the baseline range of K.  It is almost as if 

one must know the answer before one can get the answer.  The selection of FKc is important, 

since FKc tunes how the baseline da/dN data will be transformed.  FKc values ranging from 90 to 

150 for aluminum alloys have been used.  Unfortunately, there is no documentation of the value 

of FKc that was used in the historical Hsu model verification nor is there documentation of how 

best to determine FKc.  Therefore, it can be seen that not only does the Hsu model account for the 

effects of variable amplitude loading and compression in tension-compression cycles but also 

accounts for the deficiencies of Forman equation.  Therefore, because R-ratio cutoffs, material 

exponents, and spectra treatment were based on the Hsu/Forman combination, the effect of using 

the Hsu model with other expressions for crack growth rate or even parametric data should be 

verified. 
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Figure 5 

The mechanics of using Forman‟s equation with Hsu‟s Keff and Reff are illustrated in Figure 6.  

This illustration is greatly exaggerated in order to clearly show how the Hsu process works.  Hsu 

translates the circle at coordinate (K, R) to the triangle at coordinate (Keff, Reff).  The Hsu 

reduction from K to Keff is shown by arrow (A).  The increase from R to Reff is shown by 

arrow (B).  Note that Hsu‟s Keff enters the graph as “K”, there is no need to transform the 

baseline constant amplitude da/dN to an effective basis when using Hsu which is necessary for 

the Elber model.  The net effect is arrow (C) showing a reduction in crack growth rate. 
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Figure 6 

Notice THAT Hsu increases R-ratio and reduces K to Reff and Keff respectively, but keep in 

mind these are different than Willenborg et al Reff and Elber‟s Keff, this is why Hsu said his 

model is based on closure and effective stress „concepts‟.  The Hsu model can be seen to contain 

elements of Wheeler (change K), Willenborg (change R-ratio), and Elber (change only the 

minimum stress). 

 

 

Reff  = Kmineff/Kmax Hsu 

(B) 

 

(A) 

 

(C) 

 

1.0

0E-

08 

1.0

0E-

05 

1.0

0E-

04 

1.0

0E-

03 

1.0

0E-

02 

1.0

0E-

01 

1.0

0E

+0

0 

No Retardation 

 Hsu Retardation 

 
R = Kmin/Kmax 

Spectra 

Keff, Reff ) 

Hsu Model Process 

Superimposed on 
Forman Equation R-ratio Adjustment 

K, R ) 

 

da/dN 

K 



 
  
 
  Ref. : TWD03ER009-1 
 Hsu Model Page : 15 of 58 
  Issue : 1 
  Date : 01-29-2004 

 

Use or disclosure of information herein is subject to the restrictions on title page of this document. 

2 IMPLEMENTATION FLOW DIAGRAMS 

This section presents FLOW chart implementations.  Figure 7 starts out the FLOW chart 

presentations with a Non-Retarded AFGROW Flow Chart.  Figure 8 presents a Generic Hsu 

Model Crack Growth Flow Chart.  Figure 8 Flow Chart was implemented in AFGROW.  Figures 

9 and 10, present the equivalent C-5 FLOW charts.  Figure 9 presents the initializations and 

spectra checks and stress intensity truncation used before entering into the actual Hsu model 

process.  Figure 10 presents the actual Hsu model process implementation.  Figures 9 and 10, are 

presented in order to show that correlation to C-5 crack growth prediction will require more than 

Hsu, establish the foundation and to see the variables that are involved.  In other words on the 

surface the implementation of Hsu should be straightforward but there are subtle aspects which 

have to be considered especially if correlation or compatibility to LMAS is desired, specifically 

in this case cutoff of Kmax greater than Kc and reordering of the spectra to start on the 

maximum stress. 
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Figure 7 
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Figure 8 
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Figure 9 

 

 

 

 

 

Set Constraint Constant 
 

Factor = cyield = 1/(4 2 Fty
2
) Or = 1/(2 Fty

2
) 

ccf = 1 / (Factor Fty Fty) 

XKmax = 0.0 

Get Minimum of Stress Cycle 
 

Amin = Minimum( max, i; min, i ) 

Amin < 0 RmnFty     
-1.0 

Set Compression Yield Ratio 
 

RmnFty = Amin / Fty 

Set Minimum to -Yield 
 

min, i = -Fty 

max, i > 

min, i 

Switch max and min 
 

min, i = max, i 

max, i = min, i 

max, i < 0 
Set Stress Ratio 

 

R i = min, i  / max, i 

max, i = 0 

max, i > 0 

Set Stress Ratio 
 

R i = 100000. 

Set Stress Ratio 
 

R i = min, i  / max, i 

R i < Rcutoff 
Stress Ratio Cut Off 

 

R i = Rcutoff 

max, i    0 

Set min 
 

min, i = max,i R i 

Set Stress Intensity 
 

K max, i = max, i  

K min, i = min, i  

Kmax, i > Kc 
SI Cut Off 

 

Kmax, i = 0.9 Kc 

XKmax = Kmax, i 

Set Plastic Radius 
 

r p, i = K
2

 max, i Factor 

Yes Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No No 

No 

No 

No 

No 

No 

No 

No 

i = 1 

Crack Length 

ai-1 

Stress Excursion 

min, i max, i 

i = i +1 

1 

2 

2 

Note: This Flow Chart page 
initializes some parameters 
and checks spectra, checks 
Kmax, and resets values as 
needed. 

 ia1



 
  
 
  Ref. : TWD03ER009-1 
 Hsu Model Page : 19 of 58 
  Issue : 1 
  Date : 01-29-2004 

 

Use or disclosure of information herein is subject to the restrictions on title page of this document. 

Figure 10 
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3 HSU MODEL METHOD 

This section presents the main derivation of the Hsu formulation and process.  A quick time 

history of the Hsu process is given first.  The Hsu process starts by making an innovative 

assumption by checking both opening stress level and plastic zone size.  Therefore, sections are 

provided to present the definition of the opening stress and effective load interaction zone and 

plastic zone size.  Next, the modification for retardation is presented.  This section is exhaustive.  

Separate issues addressing R-ratio cutoff and closure effects and compression effects are then 

presented and discussed completely. 

3.1 A Time History Account of the Hsu Process 

The spectrum is assumed to start on min and growth is calculated for the stress (load) going from 

min to max.  Crack growth occurs for the first half of the load cycle - on up ticks.  At the 

instance of the first half cycle, an opening stress and effective load interaction zone is calculated.  

The subsequent half cycle – down tick, does not contribute to crack growth.  The ensuing up tick 

half cycles, are processed starting with a check on max versus opening stress, oOL.  If opening 

stress check is passed, the plastic zone is checked at the end of the half cycle using max.  Should 

the current plastic zone be less than the residual effective load interaction zone size, crack 

growth will be retarded by modifying the minimum stress of the cycle, if not then the residual 

effective load interaction zone size and opening stress are reset.  The minimum stress of the 

cycle is checked for compression.  If it is compressive then corrections are made to both the 

residual effective load interaction zone size and the required overload stress (i.e., Willenborg et 

al required stress) and minimum effective stress (if retarded).   

3.2 Opening stress 

At the instance of the first half load cycle and every overload half cycle thereafter, Hsu 

calculates an opening stress of overload cycle as follows. 

Fty

2
max

oOL   



  

For subsequent non-overload half cycles or in between half cycles, oOL is set to the following. 
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Fty

2
eff OL

oOL   



  

Where OLeff is the Willenborg et al stress that is required to produce the effective interaction 

zone, rpeff, at the current crack length.  It is derived in the next section. 

 

If max > = oOL then the stress cycle is considered for crack growth and the process continues to 

the check on plastic zone size.  If max < oOL then this cycle is assumed to produce no crack 

growth and the process continues to the next half cycle.  In both instances, the minimum stress is 

checked for compression and appropriate corrections are made as covered in the compression 

effect section.  Thus this check is a screening or threshold check.  The max must be greater than 

oOL or there can be no growth.  The initial setting can be explored to gain insight into this check 

by simple factoring. 

       
Fty

max

max

oOL

Fty

2
max

oOL













  

This equation states that the ratio of opening stress to maximum stress is the same as the 

maximum stress to yield strength.  It can be recognized that the maximum spectra stress for 

transport aircraft could be around 20 KSI and yield strength could be around 60 KSI, so that the 

ratio of opening stress to maximum stress could be around 0.333.  Therefore, the Hsu process 

only turns away applied load half cycles whose maximum stress is less than 0.333 times 20 or 

6.7 KSI but even this number is reduced during intermediate cycles and so even less cycles are 

turned away.  At the time of its creation, computer time was outlandish costing $800 per crack 

run; therefore Hsu implemented this check in an effort to keep processing costs down.  If no 

similar constraint exists today this check step could be eliminated. 

3.3 Effective Load Interaction Zone and Plastic Zone Size 

The Hsu model uses a load interaction zone concept based on the Irwin plastic zone model as a 

criterion to determine whether the crack growth of the current applied half cycle will be altered 

from that of constant amplitude.  Figure 11 shows the basic dimensions while Figures 12 and 13 
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develop the load interaction zone in terms of Hsu model parameters that are derived on the basis 

Wheeler.   

 

To start assume that an over load stress occurred.  By definition this will have occurred in Figure 

11 at a0 and produced KmaxOL which produced an over load plastic zone equal to the following. 

 
2

Fty

OLmax
pOL

K

 

1
  r














  

Next assume that the application of a subsequent half cycle produced growth equal to a.  Then 

by definition the effective load interaction zone is determined as follows. 

rpeff = rpOL-a 

As the crack grows further away from a0, the load interaction zone, rpeff decreases.  The plastic 

zone of the current crack, ai, is. 

2

Fty

max
p

K

 

1
  r














  

If rp > = rpeff, there will be no load interaction and the crack growth rate associated with the cycle 

will be generated as under constant amplitude loading.  Conversely, if rp < rpeff, then the crack 

growth rate will be reduced by modifying the minimum stress of the cycle.   

 

At crack length ai we can associate a stress intensity factor, Kmax eff with the effective interaction 

zone by solving the following equation. 

2

Fty

eff OL

2

Fty

effmax 
peff

K

 

1
   

K

 

1
  r





























  

And this stress intensity factor, Kmax eff can be converted into an effective load interaction zone 

stress, OLeff easily as follows. 







 a 

K
  

 a 

K
  σ eff OLeffmax 

eff OL  

This is exactly the same as the required Willenborg et al stress.  This is used in the calculation of 

oOL above in the opening stress section. 
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3.3.1 Load Interaction Zone 

Figure 11 shows the relationship of crack sizes and plastic zones, i.e., the load interaction zone.  

Figure 11 

3.4 Modification for Retardation 

As stated above, the Hsu formulation modifies the minimum stress of the applied half cycle to 

take into account variable amplitude load interaction.  Therefore, if the plastic zone size of the 

current half cycle is less than the effective load interaction zone Hsu redefines the minimum 

stress to be an effective minimum stress as follows.  

min eff = min i +   

Where 

 

a0 + rpOL - ai 

rpOL  a0  

ai  rpi  

a0 = Crack length at overload 

rpOL = Overload plastic zone 

ai = Current crack length 

rpi = Current plastic zone 

rpeff = rpOL - a 
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 = max i – min i 

 R - 1  - 1  
2m

H








 ; 0 <  < 1.0 

R must be positive in order to limit  to 1.0 

The explanation of ,  and m, requires their own subsection as follows. 

3.4.1 ,  and m  

To start, a detailed review of the Wheeler model is necessary and helpful.  Remembering that the 

denominator in Wheeler‟s model is also equal to the required plastic zone in the Willenborg 

model as follows. 

rp req = a0 + rpOL – ai  

This is also the same as the effective interaction zone, rpeff per Hsu as shown in Figure 11.  

Then Wheeler‟s equation becomes in terms of plastic zone. 

m

req p

pi

r

r
  












  

This can be expressed in terms of stress intensity, K.  Since 

2

FTY

imax 
pi  

K
 C  r 












  

2

FTY

reqmax 
req p  

K
 C  r 












  

Where 

factor constraint   and 
 

1
  C 


  

Then 

2m

reqmax 

imax 

m
2

reqmax 

imax 

m

req p

pi

K

K
   

K

K
  

r

r
  






















































  

This in turn can be expressed in terms of stress, since 

 iaiimax imax  a   K   

And 
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 iaireqmax reqmax  a   K   

Finally 

m
2

reqmax 

imax 

2m

reqmax 

imax      
















































  

Hsu defines, 

reqmax 

imax 
H   




  

Then 

 m2
H    

In summary, Wheeler‟s equation may be expressed in the following forms. 

 m2
H

m
2

reqmax 

imax 

m
2

reqmax 

imax 

m

req p

pi
     

K

K
  

r

r
  










































































  

The exponent, „m‟, in Wheeler‟s equation is empirically derived to give the best fit to test data.  

In Wheeler‟s expression it can be seen that „m‟ acts as an effectivity constant on the ratio‟s of; 

plasticity, Ks, or stresses, that is „m‟ determines how effective the ratio‟s are.  If „m‟ equals 1.0, 

the ratios are unaffected.  Hsu formulated an expression in terms of „m‟ that does not rely on 

empirically derived parameters -- except as a limiting case.  Remembering that Hsu defines the 

minimum effective stress as follows. 

min eff = min i +   

Where 

 = max i – min i 

 R - 1  - 1  
2m

H








 ; 0 <  < 1.0 

R must be positive in order to limit  to 1.0 

To understand the physical significance of this formulation, Figure 12 presents the plastic zone 

illustration of Figure 11, with the required plastic zone normalized to 1.0 by a0 + rpOL – ai or rp 

required.  And Figure 13 presents Figure 11 in terms of effectivity, i.e., including „m‟.  Load 

retardation requires that the current plastic zone be less than the required plastic zone or that, rpi 
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< a0 + rpOL - ai or rpeff which is the same thing as saying that 
2
 will always be less than one, this 

is easily seen in the normalized figures.  The normalized current plastic zone is equal to 
2
H in 

Figure 12 and the effective normalized current plastic zone equal to 
2m

H in Figure 13.  These 

figures dimension the distance between the current plastic radius and the overload plastic 

boundary which can be seen to be equal to Hsu‟s  except for the square root of (1-R) term.  The 

inclusion of the square root term is evidently a correction refinement that provided better 

correlation to test and suggests that Hsu found that the effect of closure decreased with 

increasing R-ratio.  As R-ratios increase the effect is to reduce , and reducing  reduces the 

effective cyclical stress, which in turn reduces the effective minimum stress, so as R-ratios 

increase the difference between the effective minimum stress and the minimum stress decreases 

and in the limit the effective minimum stress equals the minimum stress and there is no load 

interaction effect.  In summary, Hsu bases his formulation on the available plasticity ahead of the 

current plastic zone to the overload plastic boundary and modifies its effectivity by „m‟ and 

square root of (1-R).  Hsu formulates „m‟ as follows.  

0
H

m    1 - 
1

  m 


  

Where 

m0 = The limiting value where the delay in crack growth starts to decrease or where the 

effect of retardation starts being reduced. 
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Figure 12 
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Figure 13 

Figures 13 shows that the Wheeler‟s  is an expression of the proportion of the current plastic 

zone to the remaining overload plastic zone while Hsu„s  is an expression of the proportion of 

the plasticity between the current plastic zone and the overload plastic boundary times the square 

root of (1-R).  Therefore, Hsu can be expressed in terms of Wheeler as follows. 

   R - 1  - 1    

Provided the appropriate expression for „m‟ is used. 

It should be obvious that the Hsu „m‟ is not equal to the Wheeler „m‟.  The Hsu „m‟ is an 

expression, which has a shut off value of m0.  Hsu modifies each  = (max i/max req) ratio in the 

spectrum differently provided „m < m0‟.  The Wheeler „m‟ modifies every ratio equally.  The 

determination of „m0‟ from test data is dependent on the „m‟ expression as well as the square root 

of (1-R).  „m0‟ is essentially a tuning factor to adjust the acceleration or deceleration of 
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retardation of the overall spectrum and material.  So while Hsu is an improvement over Wheeler 

and Willenborg et al in that the parameters can be calculated it is still to a degree empirically 

based due to the dependency on „m0‟ in the limit.   

 

It is insightful to plot m, , 1-as functions of H as shown in Figure 14 and to plot  in Figure 

15.  Notice that in these presentations „m‟ is not restricted to a limiting „m0‟. 

Figure 14     Figure 15 

Figure 15 indicates that  varies between 0.0 and 1.0 by ensuring that the R-ratio varies between 

0.999 and 0.01, or essentially 1.0 and 0.0.  In other words, the R-ratio is not allowed to go 

negative else the square root (1-R) term would be greater than 1.0 and when multiplied by (1-) 

would produce an  greater than 1.0 which when factored by  would produce a min eff greater 

than max i, by definition this can not be allowed to happen.  Notice also that as R-ratio increases, 

 decreases and that as H increases  decreases.  This means that as the maximum stress, max i, 

approaches the maximum required stress, max req (the stress that is required to produce the plastic 

zone at the current crack length),  tends to zero.  This is the same thing as saying the retardation 

goes to zero and the minimum effective stress is equal to the minimum stress, min eff = min i.  On 

the other hand when H tends to zero,  tends to its maximum for the given R-ratio.  This means 

that when the maximum stress, max i, is a small fraction of the maximum required stress, max req, 

  
Graph of   = (1- ) (1-R)^.5
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retardation is maximized and the minimum effective stress approaches the maximum stress 

minimizing the effective cyclic stress, that is eff is at a minimum.  It is a little more 

complicated than this because at the same time this is happening the effective R-ratio is 

increasing but the net effect is a decrease in da/dN, which is the desired result.   

 

Figures 14 and 15 will be affected by the „m0‟ limit on „m‟, remembering that Hsu does not 

allow „m‟ to increase indefinitely, he found the rate of retardation would start to decrease.  In 

general, the higher the overload the greater the retardation effect will be.  It is conceivable that if 

the spectrum contains an absurdly high overload, crack growth could be all but stopped.  

However, Hsu observed that there appears to be a limit to the amount of retardation an overload 

could produce.  Hsu accounted for this limit in shunting „m‟ by „m0‟.  Hsu acknowledged „m0‟ to 

be a function of material and spectra.  For 7075-T6, Ti-6Al-4V, and 2219-T851 materials, „m0‟ is 

approximately equal to 1.0, while for 7050-T73, „m0‟ is about 0.6, and for D6AC „m0‟ is about 

1.5.  These „m0‟s were determined as follows; 7050-T73 aluminum was run with a C-141 flight-

by-flight spectra (with tension-compression and compression-compression cycles and a spectra 

without tension-compression and compression-compression cycles), 2219-T851 aluminum was 

run with a fighter (containing tension-compression cycles) and a bomber (containing 

compression-compression cycles) spectra, D6AC steel was run for an F-111 spectrum (no 

compression).  No warrant can be made today if these „m0‟ values are reflective of current air 

force usage or materials.  The following figures present the effects of „m0‟ on Figures 14 and 15.  

Figures 16 and 17, present m0=1.5, Figures 18 and 19, present m0=1.0, and Figures 20 and 21, 

present m0=0.6. 
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Figure 16, m0=1.5     Figure 17, m0=1.5 

 

Figure 18, m0=1.0     Figure 19, m0=1.0 
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Figure 20, m0=0.6    Figure 21, m0=0.6 

Notice by including the „m0‟ limit on „m‟, a knee results in the  versus H plot, Figures 17, 19, 

and 21.  Notice also that the slope in the  plot is changed below the knee resulting in a reduced 

value for , and for H values above the knee,  is unaffected.   

 

In summary, the Hsu „m‟ and Wheeler „m‟ have the same basic formulation however, Hsu 

modifies „m‟ for each load cycle provided „m‟ is less than m0.  Because m0 is test based, the Hsu 

model like all the previous load interaction models is still empirical. 

3.5 R-ratio Cutoff and Closure Effects 

Historically Hsu found that Shih and Wei reference 10, conducted a study on crack closure in 

fatigue for Ti-6Al-4V titanium and observed no crack closure for R-ratio greater than 0.3.  The 

statement that no closure exists above a certain R-ratio can be interpreted today in terms of the  

function versus R-ratio graph where, 

 = opening/max 

With the almost universal understanding that opening is approximately equal to closure.  Therefore 

the statement that no closure to exist means that opening is equal to min i.  In Figure 22, the 

results of reference 10, 11, and 9 are shown in terms of .  Reference 10, Shih and Wei, results 

do not reflect the normal  behavior.  Reference 11, Katcher and Kaplan, show that closure is 
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limited in their study to about R = 0.35 that is at R greater than 0.35 set open equal to min i.  

Reference 9, de Koning, exhibits the expected closure behavior.  Notice that Shih and Wei 

results fall between deKoning and Katcher and Kaplan.  In the Shih and Katcher study, spectra 

stresses were very small considering the material is titanium, 12 KSI and less.  Also Katcher‟s 

geometry was a compact tension specimen 0.719 inches thick.  Shih and Wei [10] results are 

given in Appendix A. 

Figure 22 

Based on the Shih Wei [10] study, Hsu stated to set R = 0.3 if R is greater than 0.3 in the  

equation.  Remembering that Hsu‟s minimum effective stress is written as. 

min eff = min i +   

and that 

   R - 1  - 1    

What does limiting the R-ratio in the  equation do and how does this compare to the  functions 

for titanium from reference 10 (11 and 9)?  In order to answer these questions the Hsu Forman 

relations have to be put in terms of closure functions themselves.  To do this requires that 

Forman equation be set equal to Elber‟s equation and solved for an equivalent U function.  See 

Appendix B for this development.   
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Finally, the effect of limiting R to 0.3 in the  equation is shown in Figure 23.  Figure 23 is busy; 

the solid lines present HF for R = 1.0 in the  equation and for 11  values.  The dashed lines 

present the HF for R cutoff of 0.3 in the  equation and for 11  values.  The first thing to note 

is that as  goes to 1.0 the HF collapses to F as shown in red.  This makes sense, because as the 

affects of retardation or  go to 0.0 the  function ought to tend to the basic constant amplitude  

value.  Secondly, note that by using the Forman equation either with or with out Hsu there is 

acceleration above R=0.6 for da/dN Segment 5 (see Appendix B for all Segments, Segment 6 

shows acceleration above R=0.4).  That is the function plots to the right of the no closure line.  

The third and main aspect to notice is that by limiting R to 0.3 -- the dashed lines plot above the 

solid lines indicating an increase in opening stress in Figure 23.  (Hind sight is always 20:20 but 

it appears to use Shih and Wei‟s results the R-ratio should be limited to 0.3 outside the load 

interaction model by setting the minimum spectra stress of the half cycle so that for spectra R‟s 

greater than 0.3, the min = max 0.3, and then use the basic constant amplitude crack growth 

equation.)  The red line represents baseline Segment 5 closure level without retardation (all 7 

segments are presented in Appendix B for reference), as retardation increases,  values decrease 

and closure values increase and by restricting R to 0.3, closure values increase even more.  de 

Koning does not collapse to no closure.  However, de Koning[9] is generic in terms of Fty and 

max and the paper compares 7075-T6 not Ti.  Therefore, de Koning‟s equation may not be 

applicable even though it tracks fairly well with equivalent Forman F for Segment 5, see 

Appendix A Figure A2. 

 

Figure 24 presents the same information as Figure 23 but with reference 9, 10, and 11 data 

added.   
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Figure 23 

 

Figure 24 

In summary, Figures 23 and 24 present the affects of limiting R to 0.3 in the  equation. 
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3.6 Compression Effects 

The section presents Hsu model aspects affected by compression.  A compression load will 

accelerate the fatigue crack growth and shorten the life.  If the compression load is neglected, the 

fatigue crack growth life prediction will be un-conservative.  Therefore, for the case where the 

minimum load is compressive, modification of the effective plastic zone and its corresponding 

effective tensile overload is necessary [The clarity in time history of when and where these 

modifications are to made indicates some hurried last minute thinking].  During unloading of an 

overload cycle, the change of stress field and the plastic zone will behave linearly.  However, 

Hsu has stated, should the minimum stress of the subsequent applied load cycle continuously 

decrease from tension into compression, reverse (or compressive) yielding will start to occur and 

the benefit of residual strain created by the tensile overload will begin to decrease.  Therefore, 

one may assume that the effect of compressive load on cyclic fatigue growth depends upon the 

magnitude of the compressive load and compressive yield strength.  The compressive correction 

factor follows. 

2

1

Fty

c
2

1

Fty

cFty
c  1   

 - 
  





































  

The form of c is based on the following reasoning. 

1. If there is no compressive load then c = 1.0, i.e., no effect, 

2. If the compressive load reaches the compressive yield strength, c = 0, completely 

nullifies tension overload,  

3. The choice of the exponent ½ is based on the argument that the compressive load effect is 

proportional to the square root of the plastic zone size, since the plastic zone is 

proportional to the square of the applied stress.  The basis for this was by considering the 

relations of the terms in the plastic zone equation.  

The compressive correction factor is applied to the effective overload plastic zone at the 

encounter of a compressive minimum stress as follows. 

(reff)c = c (reff)t 

Where 

Subscripts „c‟ and „t‟ are compression and tension, 
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(reff)t is the size of the effective tensile plastic zone prior to the encounter with 

compressive load 

(reff)c is the size of the effective tensile plastic zone after the encounter with the 

compressive load 

 
2

Fty

effmax
eff

K
 

 

1
  r














  

The effective over load stress following the encounter with a compressive stress will become. 

(OL)effc = c
1/2

 (OL)eff 

The effective minimum stress of the half cycle that contains the compressive minimum is to be 

set as follows  

(min)effc = c
1/2

 (min)eff 

This essentially drives the effective opening (minimum effective) stress to a lower value, which 

reduces the retardation effect – this is the desired compression effect.  

 

In summary, the compressive load effect is developed and applied consistently by modifying the 

effective residual plastic zone, the minimum effective stress value of the minimum stress half 

cycle, and the required stress at the current crack length to give the residual plastic zone.   
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5 APPENDIX A ï TITANIUM CLOSURE COMPARISONS 

This appendix presents the results of Shih and Wei[10].  Wherein it is stated that their results are 

in substantial disagreement with Elber and further they state that Elber‟s data cannot be 

considered valid.  Reference 10 is a paper submitted in partial fulfillment for a Master‟s Degree 

from Lehigh University.  Reference 10 additionally states that their results are in agreement with 

previous findings from T.T. Shih, Masters Thesis, also Lehigh University.  The main purpose of 

the paper appears to have been to discredit Elber‟s results.  It is hard to determine the maximum 

spectrum stress used in reference 10 but it is believed to vary from 10 KSI, 16.66 KSI and 20 

KSI.  Figure A1 presents the closure function, U, results data from reference 10.   

Figure A1 

For comparison purposes convert the U data in Figure A1 to  for 3 Kmax values, namely 25 

KSI(IN)
0.5

, 30 KSI(IN)
0.5

, and 35 KSI(IN)
0.5

.  The  results are plotted in Figure A2 along with 

Katcher and Kaplan [11], and de Koning [9] and equivalent Forman Segment 5.  

 

 
(From reference 10.) 
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Figure A2 

The results of Shih and Wei [10] are disconcerting, as R-ratio increases  decreases; this trend is 

not consistent with closure but spans deKoning to Katcher and Kaplan results. 
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6 APPENDIX B ï Equivalent Forman Closure Function Development 

The Hsu Model was developed in conjunction with the Forman equation.  The closure model 

functions, U, have been developed for use in Elber‟s equation.  Reference 10, 11, and 9 are based 

on Elber‟s formulation.  Therefore to be able to compare apples to apples, the Forman, and the 

Hsu Forman combination must be rewritten in the form of the Elber‟s equation or in terms of 

equivalent closure functions UF and UHF and finally in terms of F and HF.  This appendix 

develops these equivalent forms. 

 

Remembering Elber‟s equation follows. 

   nn
Eff K U C  K C  

dN

da
  

Where, 

U = Crack closure function 

The  function is derived from the crack closure function as follows. 

 = 1 – (1-R) U = = opening/max 

To keep from getting distracted, subscripts on the coefficients will be introduced as E for Elber‟s 

and F for Forman‟s equations and HF for Hsu Forman.   

 

Elber‟s equation then becomes 

   EN
E

EN
Eff K U  EC  K EC  

dN

da
  (Elber‟s equation) 

And Forman‟s equation becomes 

 
  FKC

FN
F

K  - F R1

K   FC
   

dN

da




  (Forman‟s equation) 

We can write the Forman equation in terms of Elber‟s as follows.  

   EN
FF

EN
Eff K  U EC  K EC  

dN

da
  

The Forman‟s equation recast in terms of Elber‟s equation becomes. 
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 

  

EN

F1

FKC

1 - 

FEN

1

K  

K  - F R1

K

EC

FC
EC   

dN

da

EN

EN

FN













































 

So then by grouping terms, an equivalent Forman crack closure function UF, can be obtained as 

follows. 

 

  

  

K  - F R1

K

EC

FC
  U

EN

EN

FN

1

FKC

1 - 

FEN

1

F























 

As mentioned above, the Hsu model develops an effective stress intensity factor, KEff Hsu that is 

substituted in the Forman crack growth equation as KF.  Remembering that, 

KF = KEff Hsu = Kmax i – Kmin Eff 

KEff Hsu = Kmax i – (Kmin i + K  

The last equation can be rewritten in terms of a closure function as, 

KEff Hsu = UH K 

Then equating in terms of KEff Hsu. 

KEff Hsu = UH K = Kmax i – (Kmin i + K 

And finally. 

 
K 

K    K - K
  U i minimax 

H



  

Or in terms of stress as follows. 

 





 

     - 
  U i minimax 

H  

Or simply. 

UH = 1 -  

And then,  

K = KEff Hsu = UHF KF = (1-) KF 

Performing this substitution in the above equations as follows. 

The Hsu Forman equation in terms of Elber‟s becomes.  
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   EN
FHF

EN
Eff K  U EC  K EC  

dN

da
  

The Hsu Forman‟s equation recast in terms of Elber‟s equation becomes. 

 

  

EN

F

F

1

FKC

EN

FN

FEN

1

K  

KK  )-(1 - F R1

K  )-(1

EC

FC
 EC   

dN

da

EN


































  

So then by grouping terms, an equivalent Hsu Forman crack closure function UHF, can be 

obtained as follows. 

 

  

  

KK  )-(1 - F R1

K  )-(1

EC

FC
  U

F

1

FKC

FEN

1

HF

EN

EN

FN












  

Finally with the two closure functions, UF and UHF, two gamma functions, F and HF can be 

developed using the standard equation above.   

 = 1 – (1-R) U 

F = 1 – (1-R) UF 

HF = 1 – (1-R) UHF 

 

Unfortunately none of the foregoing can be obtained closed form and must be developed 

numerically.  This was done for Titanium Ti-6Al-4V.   

In order to accomplish this study:  

1. A da/dN table was obtained for Ti-6AL-4V,  

2. A closure function was obtained by curve fit to the formulation based on de Koning‟s work in 

reference 9 using max= 60 KSI, Fty= 120 KSI as follows,  

UTi = 0.0839R
6
 - 0.0544R

5
 - 0.2729R

4
 + 0.0031R

3
 + 0.3273R

2
 + 0.3476R + 0.5653 

3. Elber‟s coefficients EC and EN were solved for using UTi to convert K to Keff, for each 

straight line da/dN segment 

4. Forman‟s coefficients FC and FN were solved for each straight line da/dN segment, 

5. Equivalent Forman closure function, UF and F was solved for each segment 
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6. Hsu  values were solved for –1.0 < R < 1.0 at 0.1 increments at 11  values from 0.01 <  < 

0.9999 at 0.1 increments with using an R-cutoff of 1.0 in the  equation. 

7. Hsu  values were solved for –1.0 < R < 1.0 at 0.1 increments at 11  values from 0.01 <  < 

0.9999 at 0.1 increments with using an R-cutoff of 0.3 in the  equation. 

8. Equivalent Hsu Forman closure function, UHF and HF was solved for using (R, ) values for 

da/dN Segment 5, these are shown in Figures 23 and 24 in main body of report. 
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1. da/dN Ti-6AL-4V 

Figure B1 

 

 

 

 

 

 

 

 

 Ti-6AL-4V Beta Annealed Titanium (LMAS SMN 366, Fig. 8.13.0)

Kpoint = 8 Segments = 7

KFC = 200  inch/cycle)

K da/dN K da/dN

3.5 1.00E-09 3.5 1.00E-03

4 4.50E-08 4 4.50E-02

5 1.40E-07 5 1.40E-01

10 1.50E-06 10 1.50E+00

40 8.00E-05 40 8.00E+01

80 5.20E-04 80 5.20E+02

100 1.10E-03 100 1.10E+03

125 1.00E-02 125 1.00E+04

FTU = 130 FTY=120 KIC =50

Ti-6AL-4V Titanium Beta Annealed

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1 10 100 1000

K

da/dN

( inch/cycle)
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3. and 4. Crack growth coefficients 

Figure B2 

 

 

 

 

 

 

 

 

 

 

 STRESS 

INTENSITY 

(DK)

CRACK 

GROWTH RATE 

(DA/DN)

FORMAN'S 

CONSTANTS

KSI X SQ. 

ROOT OF 

INCHES

(MICROINCHES

/CYCLE)
FC FN

3.5 1.00E-03

5.60E-23 28.48637

4 4.50E-02

7.11E-09 5.06079

5 1.40E-01

1.06E-07 3.37964

10 1.50E+00

4.77E-07 2.72843

40 8.00E+01

3.17E-06 2.21501

80 5.20E+02

1.70E-06 2.35764

100 1.10E+03

3.31E-18 8.21257

125 1.00E+04

               KC VALUE USED IN FORMAN EQUATION IS  200.000 KSI*SQRT(IN.)

               CONSTANT AMPLITUDE RATE IS  0.1000

               MINIMUM ALLOWABLE STRESS RATIO IS -0.1000

STRESS 

INTENSITY 

(DK)

CRACK 

GROWTH RATE 

(DA/DN)

ELBER'S 

CONSTANTS

KSI X SQ. 

ROOT OF 

INCHES

(MICROINCHES

/CYCLE)
EC EN

3.5 1.00E-03

5.58E-19 28.50763

4 4.50E-02

5.10E-10 5.08632

5 1.40E-01

3.20E-09 3.42146

10 1.50E+00

8.65E-09 2.86848

40 8.00E+01

1.48E-08 2.70044

80 5.20E+02

1.16E-09 3.35764

100 1.10E+03

2.68E-21 9.89173

125 1.00E+04
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5. Baseline Forman  function for 7 da/dN Segments 

Figure B3 

Forman  function for 3 Region II da/dN Segments  

Figure B4 
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6. and 7. 

Figure B5 

 

 

 

 at R=1.0 

 

 

 

 

 

 

 at R = 0.3 
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7 APPENDIX C ï Hsu Model Implementation 

The Hsu Model implementation for this report was accomplished in Microsoft Visual Studio 

C++ 6.0.  A Closure shell provided by Jim Harter was modified for these purposes.  Essentially a 

stand-alone crack growth program incorporating the Hsu Model was implemented for check out 

before full incorporation into AFGROW.  The implementation uses the Walker relation and 

Kmax when R is less than zero.  Hsu will be available in AFGROW with Forman‟s relation; it 

was just easier with a one-segment da/dN Walker since the Closure shell included it.  The 

implementation is included in a folder called app_C. 
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8 APPENDIX D ï Examples 

This appendix presents 2 problem cases, 1) m0 = 1.0 and 2) m0 = 1.3, for the 4 stress profile 

examples given in the following table.  Then time history and screen captures of output results 

are presented. 

 

 

For reference these stress profiles are also presented in time history plots. 

 

 

 

Max Min Max Min Max Min Max Min

Stress Stress Stress Stress Stress Stress Stress Stress

-10.0 -23.0 35.0 -5.0 35.0 -5.0 27.0 3.0

-2.0 -22.0 25.0 20.0 25.0 20.0 20.0 -1.0

3.0 -15.0 26.3 18.0 26.3 18.0 -4.0 -23.0

12.0 -6.0 27.5 16.0 27.5 16.0 -8.0 -24.0

21.0 6.0 28.8 14.0 28.8 -20.0 -10.0 -23.0

26.0 4.0 30.0 12.0 30.0 12.0 -2.0 -22.0

27.0 3.0 31.3 10.0 31.3 10.0 3.0 -15.0

20.0 -1.0 32.5 8.0 32.5 8.0 12.0 -6.0

-4.0 -23.0 33.8 6.0 33.8 6.0 21.0 6.0

-8.0 -24.0 35.0 4.0 35.0 4.0 26.0 4.0

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4

Time History - Example 1
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Time History - Example 2
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Example 1 Screen Capture – m0 = 1.0 

 

 

 

Time History - Example 4
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Example 2 Screen Capture – m0 = 1.0 

 

Example 3 Screen Capture – m0 = 1.0 
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Example 4 Screen Capture – m0 = 1.0 

 

Example 1 Screen Capture – m0 = 1.3 
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Example 2 Screen Capture – m0 = 1.3 

 

Example 3 Screen Capture – m0 = 1.3 
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Example 4 Screen Capture – m0 = 1.3 

 

 

 

 

Additional data is available in a folder app_D, that gives detail variable values for the above 

solutions but was thought to be to lengthy to provide here. 
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9 APPENDIX E ï Crack Growth Methodology 

This section briefly describes the crack growth methodology used on this project.  The computer 

program AFGROW was used for all analysis.  AFGROW is a PC based crack growth analysis 

tool distributed free by AFRL/VASM at the http://fibec.flight.wpafb.af.mil/fibec/afgrow.html web site.  Mr. Jim 

Harter is responsible.  AFGROW also conducts fatigue or crack initiation.  Fatigue is based on 

local notch strain closed hysteresis methods far superior to simple S-N based methods.  

Complete material databases are available, either the Harter material or NASGRO which then 

utilizes a Forman based integrator.   

 

A brief history of AFGROW.  ASDGRO was developed in the early to mid 1980‟s.  This became 

MODGRO by incorporating a different method for calculating stress intensity.  1987 saw 

MODGRO Version 1.X emerge by adding tabular crack growth rate database as well as Newman 

and Raju‟s part-through solutions, and other standard closed form solutions.  1989 MODGRO 

Version 2.X translated the coding language used and added plasticity based closure model, and 

changed beat calculations to user defined crack increments.  1994 AFGROW Version 3.X 

renamed MODGRO Version 2.X. 

 

http://fibec.flight.wpafb.af.mil/fibec/afgrow.html

