Bearing Solution & Boundary Condition Sensitivity

J.A. Harter

For

LexTech, Inc.

AFGROW Workshop

Layton, UT Sep 2013

Here We Go Again.....

We have learned that:

The open hole width correction can not be applied to pin loaded holes

The open hole offset correction can't be applied to pin loaded holes

$$= \bigcirc \times F_{\text{Offset}}$$

Background

- The current Classic AFGROW bearing solution is a tabular solution developed using StressCheck for an un-constrained (in-plane) plate with springs simulating the pin loading
- The new bearing correction was curve fit to StressCheck models for offset/centered holes in constrained plates with springs

Bearing Solutions w/Various B.C.s

Baseline Tabular Bearing Solution

CUC - DV	W/D											
C/(C+R)*	1.3	1.5	2	2.5	3	4	8	16	40	100	1000	
0.000	4.5150	3.2000	2.3000	1.9050	1.7000	1.5260	1.1970	1.0363	0.8898	0.8787	0.8700	
0.025	4.4348	3.1133	2.1487	1.7332	1.5689	1.3885	1.1186	0.9769	0.8433			
0.050	4.3594	3.0331	2.0200	1.6001	1.4500	1.2794	1.0493	0.9186	0.7898	Α 4	A A AAA A .	^
0.100	4.2414	2.9165	1.8701	1.4564	1.2750	1.1216	0.9293	0.8080	0.6813			
0.150	4.1913	2.8540	1.7914	1.3565	1.1614	0.9983	0.8245	0.7082	0.5855			
0.200	4.1908	2.8098	1.7202	1.2757	1.0821	0.9020	0.7298	0.6222	0.5110			
0.250	4.2037	2.7745	1.6356	1.2060	1.0158	0.8239	0.6424	0.5387	0.4457			
0.300	4.2198	2.7460	1.5612	1.1429	0.9465	0.7532	0.5636	0.4691	0.3908			
0.350	4.2455	2.7228	1.4990	1.0854	0.8795	0.6861	0.4960	0.4131	0.3415			
0.400	4.2876	2.7054	1.4435	1.0333	0.8222	0.6250	0.4380	0.3594	0.2958			
0.450	4.3526	2.6950	1.3959	0.9860	0.7720	0.5729	0.3843	0.3101	0.2549			
0.500	4.4414	2.6935	1.3562	0.9430	0.7266	0.5268	0.3358	0.2673	0.2178			
0.550	4.5460	2.7046	1.3248	0.9037	0.6867	0.4883	0.2928	0.2265	0.1849			
0.600	4.6575	2.7330	1.3025	0.8691	0.6520	0.4560	0.2553	0.1885	0.1539			
0.650	4.7670	2.7829	1.2912	0.8417	0.6227	0.4226	0.2222	0.1572	0.1274			
0.700	4.8895	2.8581	1.2936	0.8257	0.5997	0.3981	0.1954	0.1320	0.1069			
0.750	5.1337	2.9620	1.3151	0.8200	0.5844	0.3798	0.1751	0.1117	0.0873			
0.800	5.4893	3.1043	1.3652	0.8259	0.5800	0.3630	0.1540	0.0920	0.0695			
0.825	5.6639	3.2000	1.4069	0.8399	0.5837	0.3582	0.1445	0.0832	0.0616			
0.850	6.0283	3.3351	1.4654	0.8640	0.5933	0.3586	0.1355	0.0759	0.0539			
0.875	6.8300	3.5963	1.5459	0.8800	0.6113	0.3666	0.1269	0.0700	0.0459			
0.900	8.1821	4.0870	1.6728	0.9026	0.6427	0.3810	0.1205	0.0639	0.0378			
0.925	9.9887	4.8792	1.8506	1.1291	0.6979	0.3970	0.1191	0.0555	0.0316			
0.950	12.1363	5.9209	2.2067	1.6711	0.7968	0.4400	0.1145	0.0470	0.0255			
0.975	14.5111	7.1289	2.9777	2.4350	1.0919	0.6033	0.1473	0.0734	0.0235			1
1.000	16.9997	8.4200	3.9000	3.3100	1.6000	0.8510	0.2920	0.1380	0.0670			
			C 1	(C D)								
Values were normalized as: $\frac{C/(C+R)}{(1-D/W)}$												

(1-D/W)

Centered Hole

W=0.02M, D=0.004M

Difference appears to be the result of interpolation error

Compounded Offset Correction

New Bearing Offset Correction

FEM* Boundary Conditions

Model Thickness = 1.0 Loading to produce a unit resultant force at the hole (1/W) Spring (E_{Spring} = 3X E_{Plate}) B.C. along ½ hole

Discussion

- Our original thinking was biased by axial load case behavior (much less bending for the axially loaded single cracked, centered hole case)
- Curve fitting was more difficult for the un-constrained cases
- Assumed that most practical cases are constrained by substructure
- Although the new solution is improved, it may be conservative in some cases (fully constrained cases)
- The spline interpolation used to interpolate the solution for the baseline centered hole solution can introduce some error. Adding one or two more W/D solutions would improve the results (I have completed this work)
- Underscores the need to continue moving to real-time Ksolutions using an external solver for specific geometries
- This issue warrants more consideration depending on user interest